

CECC122: Linear Algebra and Matrix Theory Lecture Notes 4: Euclidean Vector Spaces

Faculty of Engineering Department of Informatics Manara University

Chapter 3

Euclidean Vector Spaces

- 1. Vectors in 2-Space, 3-Space, and *n*-Space
- 2. Norm, Dot Product, and Distance in *Rⁿ*
- 3. Basis, Spanning Sets and Linear Independence

1. Vectors in 2-Space, 3-Space, and *n*-Space

Vectors in the plane

a vector x in the plane is represented by a directed line segment with its initial point at the origin and its terminal point at (x_1, x_2) .

EuclideanVector Spaces https://manara.edu.sy/ 2024-2025 5/33

Vectors in the *n*-space

 $R^1 = 1$ -space = set of all real number $R^2 = 2$ -space = set of all ordered pair of real numbers (x_1, x_2) $R^3 = 3$ -space = set of all ordered triple of real numbers (x_1, x_2, x_3) $R^n = n$ -space = set of all ordered *n*-tuple of real numbers $(x_1, x_2, ..., x_n)$

 \blacksquare Notes: An *n*-tuple $(x_1, x_2, ..., x_n)$ can be viewed as: (1) a point in R^n with the x_i 's as its coordinates. $\begin{bmatrix} x_1 \ x_2 \ \vdots \ x_n \end{bmatrix}$ x_{\circ} | *x* 1 $\lceil x_1 \rceil$ $\left\lceil \frac{1}{r} \right\rceil$ $x = 1$ \vdots \vdots $\lfloor x_n \rfloor$ 1 2 (2) a vector x in R^n with the x_i 's as its components. (3) a vector x in Rn will be represented also as $\boldsymbol{x} = (x_1, x_2, ..., x_n)$

Operations on Vectors in R^n

Let $\boldsymbol{u} = (u_1, u_2, ..., u_n)$ and $\boldsymbol{v} = (v_1, v_2, ..., v_n)$ two vectors in R^n , and if c is any scalar

- \blacksquare Equal: $\boldsymbol{u} = \boldsymbol{v}$ if and only if $u_1 = v_1, \; u_2 = v_2, \; ...,\; u_n = v_n$
- Vector addition (the sum of *u* and *v*): $u + v = (u_1 + v_1, u_2 + v_2, ..., u_n + v_n)$
- **Scalar multiplication (the scalar multiple of** *u* **by** *c***):** $cu = (cu_1, cu_2, ..., cu_n)$
- \blacksquare Note: The sum of two vectors and the scalar multiple of a vector in R^n are called the standard operations in R^n .
- Negative: $-u = (-u_1, -u_2, ..., -u_n)$
- Difference: $u v = (u_1 v_1, u_2 v_2, ..., u_n v_n)$
- **Zero vector:** $0 = (0, 0, ..., 0)$

Notes:

(1) The zero vector 0 in R^n is called the additive identity in R^n .

(2) The vector −*v* is called the additive inverse of *v*.

Example 1: Vector operations in R^3

Let
$$
u = (-1, 0, 1)
$$
 and $v = (2, -1, 5)$ in \mathbb{R}^3 .

Perform each vector operation:

(a)
$$
u + v
$$
 (b) 2u (c) $v - 2u$
\n(a) $u + v = (-1, 0, 1) + (2, -1, 5) = (1, -1, 6)$
\n(b) $2u = 2(-1, 0, 1) = (-2, 0, 2)$
\n(c) $v - 2u = (2, -1, 5) - (-2, 0, 2) = (4, -1, 3)$

- **EXTED 1: (Properties of vector addition and scalar multiplication)** Let u , v , and w be vectors in $Rⁿ$, and let c and d be scalars
	- (1) $u + v$ is a vector in R^n
	-
	-
	-
	-
	- (6) *cu* is a vector in *R*
	- (7) $c(u + v) = cu + cv$ Distributive property
	- (8) $(c+d)u = cu + du$ Distributive property
	-

Closure under addition (2) $u + v = v + u$ Commutative property of addition (3) $(u + v) + w = u + (v + w)$ Associative property of addition (4) $u + 0 = u$ Additive identity property (5) $u + (-u) = 0$ Additive inverse property **Closure under scalar multiplication** (9) *c*(*du*) = (*cd*)*u* Associative property of multiplication $(10) 1(u) = u$ Multiplicative identity property

▪ Example 2: Vector operations in *R*⁴

Let $u = (2, -1, 5, 0), v = (4, 3, 1, -1)$ and $w = (-6, 2, 0, 3)$ be vectors in $R⁴$. Solve *x* for each of the following: (a) $x = 2u - (v + 3w)$, (b) $3(x + w) = 2u - v + x$ (a) $x=2u-(v+3w)=2u-v-3w$ $= (4, -2, 10, 0) - (4, 3, 1, -1) - (-18, 6, 0, 9)$ $= (4 - 4 + 18, -2 - 3 - 6, 10 - 1 - 0, 0 + 1 - 9)$ $=$ (18, $-11, 9, -8$) anople2: Vector operations in $R^{\frac{3}{4}}$

t $u = (2, -1, 5, 0), v = (4, 3, 1, -1)$ and $w = (-6, 2, 0, 3)$ b

lve x for each of the following: (a) $x=2u-(v+3w)$, (b) $3(x +$

(a) $x=2u-(v+3w)=2u-v-3w$
 $=(4, -2, 10, 0) - (4, 3, 1, -1) - (-18, 6$ Contrained in the selection of the following: (a) $x = 2u - (v + 3w)$, (b) 3($x + w$) = 2 $u - v + x$

Patternal of the following: (a) $x = 2u - (v + 3w)$, (b) 3($x + w$) = 2 $u - v + x$

2 $u - (v + 3w) = 2u - v - 3w$

(4, -2, 10, 0) - (4, 3, 1, -1) le 2: Vector operations in R^4
 $= (2, -1, 5, 0), v = (4, 3, 1, -1)$ and $w = (-6, 2, 0, 3)$ be vectors in R^4 .
 x for each of the following: (a) $x = 2u - (v + 3w)$, (b) $3(x + w) = 2u - v + x$
 $x = 2u - (v + 3w) = 2u - v - 3w$
 $= (4, -2, 10,$ 2: Vector operations in l^4

2: Vector operations in l^4

(2, -1, 5, 0), $v = (4, 3, 1, -1)$ and $w = (-6, 2, 0, 3)$ be vectors in l^4 .

or each of the following: (a) $x = 2u - (v + 3w)$, (b) $3(x + w) = 2u - v + x$
 $= 2u - (v + 3w) = 2$ 2: Vector operations in R^4

2: Vector operations in R^4

(2, -1, 5, 0), $v = (4, 3, 1, -1)$ and $w = (-6, 2, 0, 3)$ be vectors in R^4 .

or each of the following: (a) $x = 2u - (v + 3w)$, (b) $3(x + w) = 2u - v + x$
 $= 2u - (v + 3w) = 2$ $\Leftrightarrow 2x = 2u - v - 3w \Leftrightarrow x = u - \frac{1}{2}v - \frac{3}{2}w$ and $w = (-6, 2, 0, 3)$ b

= 2u - (v + 3w), (b) 3(x +

(-18, 6, 0, 9)

- 0, 0 + 1 - 9)
 $v = 2u - v + x \Leftrightarrow 3x - x$
 $\frac{1}{2}v - \frac{3}{2}w$

+ (9, - 3, 0, - $\frac{9}{2}$)
 $\frac{3}{2}u$ in R^4

3, 1, -1) and $w = (-6, 2, 0, 3)$ be vectors

ng: (a) $x = 2u - (v + 3w)$, (b) $3(x + w) = 2u - v - 3w$

3, 1, -1) - (-18, 6, 0, 9)

6, 10 - 1 - 0, 0 + 1 - 9)
 $\Rightarrow 3x + 3w = 2u - v + x \Leftrightarrow 3x - x = 2u - v$
 $\Rightarrow x = u - \frac{1}{2}v - \frac{3}{2}w$
 in R^4

3, 1, -1) and $w = (-6, 2, 0, 3)$ be vectors

ng: (a) $x = 2u - (v + 3w)$, (b) $3(x + w) = 2u - v - 3w$

3, 1, -1) - (-18, 6, 0, 9)

6, 10 - 1 - 0, 0 + 1 - 9)
 $\Rightarrow 3x + 3w = 2u - v + x \Leftrightarrow 3x - x = 2u - v$
 $\Rightarrow x = u - \frac{1}{2}v - \frac{3}{2}w$
 $= (9, -\frac{11}{2}, \frac{9}{2}, -4)$ tor operations in $R^{\frac{3\omega c}{c}}$

5, 0), $v = (4, 3, 1, -1)$

of the following: (a) $x = v + 3w = 2u - v - 3w$

10, 0) – (4, 3, 1, -1) –

+18, -2 – 3 – 6, 10 – 1

11, 9, –8)

= 2u – v + x \Leftrightarrow 3x + 3x

2u – v – 3w \Leftrightarrow x = u –
 ble 2: Vector operations in R^4
 $= (2, -1, 5, 0), v = (4, 3, 1, -1)$ and $w = (-6, 2, 0, 3)$ be vectors in R^4 .
 x for each of the following: (a) $x = 2u - (v + 3w)$, (b) $3(x + w) = 2u - v + x$
 $x = 2u - (v + 3w) = 2u - v - 3w$
 $= (4, -2, 10,$ 2: Vector operations in R^4

2: -1 , 5, 0), $v = (4, 3, 1, -1)$ and $w = (-6,$

r each of the following: (a) $x = 2u - (v + 3w)$
 $2u - (v + 3w) = 2u - v - 3w$
 $(4, -2, 10, 0) - (4, 3, 1, -1) - (-18, 6, 0, 9)$
 $(4 - 4 + 18, -2 - 3 - 6, 10 - 1 - 0,$ Contractions in R^4

(2 1 - 1, 5, 0), $v = (4, 3, 1, -1)$ and $w = (-6, 2, 0, 3)$ be vector

each of the following: (a) $x = 2u - (v + 3w)$, (b) $3(x + w) = 2u$
 $2u - (v + 3w) = 2u - v - 3w$

(4, -2, 10, 0) - (4, 3, 1, -1) - (-18, 6, 0, 9 Convertions in $R^{\frac{3\omega_0(\frac{1}{2})}{\frac{\omega_0(\frac{1}{2})}{\frac{\omega_0(\frac{1}{2})}{\frac{\omega_0(\frac{1}{2})}{\omega_0(\frac{1}{2})}}}}$

(9 - 1, 5, 0), $v = (4, 3, 1, -1)$ and e and e is contrary $(4, -2, 10, 0) - (4, 3, 1, -1) - (-1)$

(4, -2, 10, 0) - $(4, 3, 1, -1) - (-1)$ 2: Vector operations in R^4

(2, -1, 5, 0), $v = (4, 3, 1, -1)$ and $w = (-6, 2, 0, 3)$ be vectors in R^4 .

for each of the following: (a) $x = 2u - (v + 3w)$, (b) $3(x + w) = 2u - v + x$
 $= 2u - (v + 3w) = 2u - v - 3w$
 $= (4, -2, 10, 0) - (4,$ *x* vector operations in R^4
 $-1, 5, 0$, $v = (4, 3, 1, -1)$ and $w = (-6, 2, 0, 3)$ be vectors in R^4 .

each of the following: (a) $x = 2u - (v + 3w)$, (b) $3(x + w) = 2u - v + x$
 $2u - (v + 3w) = 2u - v - 3w$
 $4, -2, 10, 0) - (4, 3, 1, -1) - ($ $x = (2, 1, 5, 0) + (-2, -\frac{3}{2}, -\frac{1}{2}, \frac{1}{2}) + (9, -3, 0, -\frac{9}{2})$

- **Theorem 2: (Properties of additive identity and additive inverse)** Let v be a vector in R^n , and c be a scalar. Then the properties below are true: (1) The additive identity is unique. That is, if $u + v = v$, then $u = 0$ (2) The additive inverse of *v* is unique. That is, if $v + u = 0$, then $u = -v$
	- (3) $0v = 0$ (4) $c0 = 0$
	- (5) If $cv = 0$, then $c = 0$ or $v = 0$
	- $(6) -(-v) = v$

Linear combination

 \blacksquare The vector x is called a linear combination of $\textit{\textbf{v}}_1, \textit{\textbf{v}}_2, \text{ ...}, \textit{\textbf{v}}_k$ if it can be expressed in the form $\boldsymbol{x} = c_1 \boldsymbol{v}_1 + c_2 \boldsymbol{v}_2 + ... + c_k \boldsymbol{v}_k$ where $c_1, c_2, ..., c_k$ are scalars.

■ Example 3: linear combination

Given $x = (-1, -2, -2), u = (0, 1, 4), v = (-1, 1, 2),$ and $w = (3, 1, 2)$ in R^3 . Find a, b *,* and c such that $x = au + bv + cw$.

$$
-b + 3c = -1
$$

\n $a + b + c = -2$ $\Rightarrow a = 1, b = -2, c = -1$ Thus $x = u - 2v - w$
\n $4a + 2b + 2c = -2$

■ Example 4: not a linear combination

Given $x = (1, -2, 2), u = (1, 2, 3), v = (0, 1, 2),$ and $w = (-1, 0, 1)$ in R^3 . Prove that *x* is not a linear combination of *u*, *v* and *w*.

$$
\begin{bmatrix} 1 & 0 & -1 & | & 1 \ 2 & 1 & 0 & | & -2 \ 3 & 2 & 1 & | & 2 \end{bmatrix}
$$
 Gauss-J. Elimination
$$
\begin{bmatrix} 1 & 0 & -1 & | & 1 \ 0 & 1 & 2 & | & -4 \ 0 & 0 & 0 & | & 7 \end{bmatrix} \Rightarrow x \neq au + bv + cw
$$

2. Norm, Dot Product, and Distance in $\overline{R^n}$

- **Norm (Length) of a Vector: The norm of a vector** $v = (v_1, v_2, ..., v_n)$ **in** R^n **is** given by: $\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + \cdots + v_n^2}$
- Example 5: Norm of a vector (a) In R^5 , the length of $v = (0, -2, 1, 4, -2)$ is given by: $||v|| = \sqrt{0^2 + (-2)^2 + 1^2 + 4^2 + (-2)^2} = \sqrt{25} = 5$

(b) In R^3 the length of $v = (\frac{2}{\sqrt{17}}, -\frac{2}{\sqrt{17}}, \frac{3}{\sqrt{17}})$ is given by:

$$
\|\mathbf{v}\| = \sqrt{\left(\frac{2}{\sqrt{17}}\right)^2 + \left(-\frac{2}{\sqrt{17}}\right)^2 + \left(\frac{3}{\sqrt{17}}\right)^2} = \sqrt{\frac{17}{17}} = 1
$$

(*v* is a unit vector)

EuclideanVector Spaces <https://manara.edu.sy/> 2024-2025 13/33

■ Notes: Properties of length $(1) ||v|| \geq 0$

 $\mathbb{I}(2)\left\Vert v\right\Vert =1\Rightarrow v$ is called a unit vector $(3) ||v|| = 0$ iff $v = 0$

Notes:

(1) the standard unit vector in R^2 : { i , j } = {(1, 0), (0, 1)} (2) the standard unit vector in R^3 : { i , j , k } = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

(1) $c > 0 \Rightarrow u$ and *v* have the same direction. (2) $c < 0 \Rightarrow u$ and *v* have the opposite direction. **• Notes:** Two nonzero vectors are parallel $u = cv$

- Theorem 3: (Length of a scalar multiple) Let v be a vector in R^n and c be a scalar, then
- Theorem 4: (Unit vector in the direction of *v*) If \boldsymbol{v} is a nonzero vector in R^n has length 1 and has the same direction as *v*.

This vector *u* is called the unit vector in the direction of *v*.

- Note: The process of finding the unit vector in the direction of *v* is called normalizing the vector *v*.
- Example 6: Finding a unit vector

Find the unit vector in the direction of $v = (3, -1, 2)$.

$$
\|\mathbf{v}\| = \sqrt{3^2 + (-1)^2 + 2^2} = \sqrt{14}
$$

\n
$$
\Rightarrow \frac{\mathbf{v}}{\|\mathbf{v}\|} = \frac{(3, -1, 2)}{\sqrt{3^2 + (-1)^2 + 2^2}} = \frac{1}{\sqrt{14}}(3, -1, 2) = \left(\frac{3}{\sqrt{14}}, \frac{-1}{\sqrt{14}}, \frac{2}{\sqrt{14}}\right)
$$

- **Distance between two vectors: The distance between** two vectors \boldsymbol{u} and \boldsymbol{v} in R^n is:
- (1) $d(u, v) \ge 0$ (2) $d(u, v) = 0$ if and only if $u = v$ (3) $d(u, v) = d(v, u)$ ■ Notes: (Properties of distance)

■ Example 7: Distance between 2 vectors

The distance between $u = (0, 2, 2)$ and $v = (2, 0, 1)$ is

$$
d(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} - \mathbf{v}|| = ||(0 - 2), (2 - 0), (2 - 1)|| = \sqrt{(-2)^2 + 2^2 + 1^2} = 3
$$

- Dot product in R^n : The dot product of $u = (u_1, u_2, ..., u_n)$ and $v = (v_1, v_2, ..., v_n)$ is the scalar quantity: $u \cdot v = u_1 v_1 + u_2 v_2 + ... + u_n v_n$
- Theorem 5: (Properties of the dot product)

If u, v , and w are vectors in $Rⁿ$ and c is a scalar, then:

- (1) $u \cdot v = v \cdot u$ (2) $u \cdot (v + w) = u \cdot v + u \cdot w$ (3) $c(u \cdot v) = (cu) \cdot v = u \cdot (cv)$ (4) $v \cdot v = ||v||^2$
- (5) $v \cdot v \geq 0$, and $v \cdot v = 0$ if and only if $v = 0$

The dot product of $u = (1, 2, 0, -3)$ and $v = (3, -2, 4, 2)$ is ■ Example 8: Finding the dot product of two vectors

 $u \cdot v = (1)(3) + (2)(-2) + (0)(4) + (-3)(2) = -7$

- Euclidean *n*-space: R^n was defined to be the set of all order *n*-tuples of real numbers. When R^n is combined with the standard operations of vector addition, scalar multiplication, vector length, and the dot product, the resulting vector space is called Euclidean *n*-space.
- Example 9: Finding dot product

$$
u = (2, -2), v = (5, 8), w = (-4, 3)
$$
\n
$$
(a) u.v \qquad (b) (u.v)w \qquad (c) u.(2v) \qquad (d) \|w\|^2 \qquad (e) u.(v - 2w)
$$
\n
$$
(a) u.v = (2)(5) + (-2)(8) = -6 \qquad (b) (u.v)w = -w = -6(-4, 3) = (24, -18)
$$

$$
(c) \ u.(2v) = 2(u.v) = 2(-6) = -12
$$
\n
$$
(e) (v - 2w) = (5 - (-8), 8 - 6) = (13, 2)
$$
\n
$$
u.(v - 2w) = (2)(13) + (-2)(2) = 22
$$

Given $u \cdot u = 39$, $u \cdot v = -3$, $v \cdot v = 79$. Find $(u + 2v) \cdot (3u + v)$ ■ Example 10: Using the properties of the dot product $(u+2v)$. $(3u+v) = u(3u+v) + 2v(3u+v)$ $= u(3u) + u(3v) + (2v)$. $(3u) + (2v)$. *v* $= 3(u, u) + u, v + 6(v, u) + 2(v, v)$ $= 3(u, u) + 7(u, v) + 2(v, v)$ $= 3(39) + 7(-3) + 2(79) = 254$

- Theorem 6: (The Cauchy-Schwarz inequality) If u and v are vectors in R^n , then
- Example 11: (An example of the Cauchy-Schwarz inequality) Verify the Cauchy-Schwarz inequality for $u = (1, -1, 3)$ and $v = (2, 0, -1)$

$$
u.u = 11, u.v = -1, v.v = 5
$$

$$
|u.v| = |-1| = 1, ||u|| ||v|| = \sqrt{u.u} \sqrt{v.v} = \sqrt{11}\sqrt{5} = \sqrt{55}, |u.v| \le ||u|| ||v||
$$

The angle between two vectors in R^n :

$$
\cos \theta = \frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\|\boldsymbol{u}\| \|\boldsymbol{v}\|}, \ 0 \le \theta \le \pi
$$

- Note: The angle between the zero vector and another vector is not defined.
- Example 12: Finding the angle between $u = (-4, 0, 2, -2), v = (2, 0, -1, 1)$

$$
\|\mathbf{u}\| = \sqrt{\mathbf{u}.\mathbf{u}} = \sqrt{(-4)^2 + 0^2 + 2^2 + (-2)^2} = \sqrt{24}
$$

$$
\|\mathbf{v}\| = \sqrt{\mathbf{v}.\mathbf{v}} = \sqrt{(2)^2 + 0^2 + (-1)^2 + 1^2} = \sqrt{6}
$$

$$
u.v = (-4)(2) + (0)(0) + (2)(-1) + (-2)(1) = -12
$$

\n⇒ $\cos \theta = \frac{u \cdot v}{\|u\| \|v\|} = \frac{-12}{\sqrt{24}\sqrt{6}} = \frac{-12}{\sqrt{144}} = -1 \Rightarrow \theta = \pi$

- Note: u and v have opposite directions $(u = -2v)$.
- **Orthogonal vectors:** Tow vectors u and v in R^n are orthogonal if u **.** v = 0.
- Note: The vector 0 is said to be orthogonal to every vector.
- **Theorem 7: (The Triangle inequality)** If u and v are vectors in R^n , then
- Note: Equality occurs in the triangle inequality if and only if the vectors *u* and *v* have the same direction.

 $u + v$

u

Orthogonal projections

Example 1 Let u and v be two vectors in R^n , such that $v \neq 0$. Then the orthogonal projection of *u* onto *v* is given by $proj_v u = \frac{u \cdot v}{v} = av$

• Note: If *v* is a unit vector, then $v \cdot v = ||v||^2 = 1$. The formula for the orthogonal projection of u onto v takes the following simpler form:

$$
\text{proj}_v \boldsymbol{u} = (\boldsymbol{u} \cdot \boldsymbol{v}) \boldsymbol{v}
$$

Example 13: (Finding an orthogonal projection in R^3)

Find the orthogonal projection of $u = (6, 2, 4)$ onto $v = (1, 2, 0)$.

$$
u.v = (6)(1) + (2)(2) + (4)(0) = 10 \qquad v.v = 12 + 22 + 02 = 5
$$

proj_v $u = \frac{u \cdot v}{v \cdot v} v = \frac{10}{5}(1, 2, 0) = (2, 4, 0)$

• Note: $u - \text{proj}_x u = (6, 2, 4) - (2, 4, 0) = (4, -2, 4)$ is orthogonal to $v = (1, 2, 0)$

If u and v are vectors in $Rⁿ$, then u and v are orthogonal

• Theorem 9: (The Pythagorean theorem)

$$
\boldsymbol{u}.\boldsymbol{v} = \boldsymbol{u}^T \boldsymbol{v} = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} u_1 v_1 + u_2 v_2 + \cdots + u_n v_n \end{bmatrix}
$$

EuclideanVector Spaces <https://manara.edu.sy/> 2024-2025 25/33

حَـامعة المَـنارة

lul

- 3. Basis, Spanning Sets and Linear Independence
- **Definition:** Let $S = \{v_1, v_2,..., v_k\}$ is a non empty set of vectors in R^n and let the vector equation $c_1v_1 + c_2v_2 + ... + c_kv_k = 0$.
	- (1) If the equation has only the trivial solution $(c_1 = c_2 = \ldots c_k = 0)$, then *S* is called linearly independent (LI).
	- (2) If the equation has a non trivial solution (i.e. not all zeros), then *S* is called linearly dependent (LD).
- Notes:
	- (1) $0 \in S \Rightarrow S$ is linearly dependent. (2) $v \neq 0 \Rightarrow \{v\}$ is linearly independent.
	- (3) $S_1 \subseteq S_2$ if S_1 is linearly dependent $\Rightarrow S_2$ is linearly dependent.

if S_2 is linearly independent $\Rightarrow S_1$ is linearly independent.

■ Example 14: (Testing for linearly independent)

Determine whether the following set of vectors in R^3 is LI or LD

$$
S = \{v_1 = (1, 2, 3), v_2 = (0, 1, 2), v_3 = (-2, 0, 1)\}
$$

\n
$$
c_1 - 2c_3 = 0
$$

\n
$$
c_1v_1 + c_2v_2 + c_3v_3 = 0 \Rightarrow 2c_1 + c_2 = 0
$$

\n
$$
3c_1 + 2c_2 + c_3 = 0
$$

\n
$$
\Rightarrow \begin{bmatrix} 1 & 0 & -2 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix} \xrightarrow{\text{Gauss-J. Elimination}} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \xrightarrow{ } c_1 = c_2 = c_3 = 0
$$

• Independence of two vectors: Two vectors u and v in R^n **are linearly** dependent if and only if one is a scalar multiple of the other.

(1) $S = \{v_1, v_2\} = \{(1, 2, 0), (-2, 2, 1)\}$ is LI because v_1 and v_2 are not scalar multiples of each other.

(2) $S = \{v_1, v_2\} = \{(4, -4, -2), (-2, 2, 1)\}$ is LD because $v_1 = -2v_2$

• Theorem 10: (dependence in R^n **)**

Let $S = \{v_1, v_2,..., v_k\}$ be a set of different vectors in R^n . If $n < k$, then the set S is linearly dependent.

- Note: Let $S = \{v_1, v_2, \ldots, v_k\}$ be a set of *k* vectors that are LI in R^n , then $k ≤ n$.
- **Theorem 11: (Independence in** R^n **)**

Let $S = \{v_1, v_2,..., v_n\}$ be *n* vectors in R^n . Let *A* be the nxn matrix whose columns are given by $\bm{v}_1, \ \bm{v}_2, ..., \ \bm{v}_n.$ Then vectors $\bm{v}_1, \ \bm{v}_2, ..., \ \bm{v}_n$ are linearly independent \Leftrightarrow matrix A is invertible.

Spanning sets

- **Definition:** Let $S = \{v_1, v_2,..., v_k\}$ be a set of *k* vectors in R^n . The set *S* is a spanning set of R^n if every vector in R^n can be written as a linear combination of vectors in *S*. In such cases it is said that *S* spans or generates the n -space R^n .
- **Example 15: (A spanning set for** R^3 **)**

The set $S = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ spans R^3 because any vector $u = (u_1, u_2, u_3)$ in R^3 can be written as:

$$
u = u_1(1, 0, 0) + u_2(0, 1, 0) + u_3(0, 0, 1) = (u_1, u_2, u_3)
$$

• Note: Let $S = \{v_1, v_2,..., v_k\}$ be a set of *k* vectors in R^n that spans R^n , then $k \geq n$.

Example 16: (A spanning set for R^3 **)**

Show that the set $S_1 = \{ \bm{v}_1 = (\bm{1},\,\bm{2},\,\bm{3}),\ \bm{v}_2 = (\bm{0},\,\bm{1},\,\bm{2}),\ \bm{v}_3 = (-2,\,\bm{0},\,\bm{1})\}$ spans R^3 We must determine whether an arbitrary vector $\boldsymbol{u} = (u_1,~u_2,~u_3)$ in R^3 can be as a linear combination of $\pmb{v}_1, \, \pmb{v}_2$ and $\pmb{v}_3.$

$$
\mathbf{u} \in R^3 \Rightarrow \mathbf{u} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 \Rightarrow 2c_1 + c_2 = u_2
$$

\n
$$
|A| = \begin{vmatrix} 1 & 0 & -2 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{vmatrix} \neq 0
$$

\n
$$
C_1 - 2c_3 = u_1
$$

\n
$$
3c_1 + c_2 = u_2
$$

\n
$$
3c_1 + 2c_2 + c_3 = u_3
$$

 $\Rightarrow Ax = b$ has exactly one solution for every \boldsymbol{u} in $R^3.$ \Rightarrow spans $(S_1^-) = R^3$

Example 17: (A Set Does Not Span R^3 **)** From Example 4: the set $S_2 = \{(1, 2, 3), (0, 1, 2), (-1, 0, 1)\}$ does not span R^3 because $w = (1, -2, 2)$ is in $R³$ and cannot be expressed as a linear combination of the vectors in S_2 .

 $S_1 = \{(1, 2, 3), (0, 1, 2), (-2, 0, 1)\}\$ *S*₂ = {(1, 2, 3), (0, 1, 2), (-1, 0, 1)}

Basis

- **Definition:** Let $S = \{v_1, v_2, \ldots, v_n\}$ be a set of *n* vectors in R^n . The set *S* form a **basis for** $R^n \Leftrightarrow$
	- $\left(\mathbf{i} \right)$ $\quad \boldsymbol{v}_{1},\ \boldsymbol{v}_{2},\dots,\ \boldsymbol{v}_{n}$ span R^{n} and (ii) $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ are linearly independent.
- **The standard basis for** R^3 : { i , j , k } = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
- A nonstandard Basis for R^3 : $S_1 = \{(1, 2, 3), (0, 1, 2), (-2, 0, 1)\}.$
- Notes:
	- (1) Any *n* linearly independent vectors in $Rⁿ$ form a basis for $Rⁿ$.
	- (2) Any *n* vectors which span R^n form a basis for R^n .
	- (3) Every basis of R^n contains exactly n vectors.

Theorem 12: (Uniqueness of basis representation)

If $S = \{v_1, v_2, ..., v_n\}$ is a basis for R^n , then every vector in R^n can be written in one and only one way as a linear combination of vectors in *S*.

Example 18: (Basis for R^3 **)**

Show that the set $S = \{v_1 = (1, 2, 1), v_2 = (2, 9, 0), v_3 = (3, 3, 4)\}\)$ form a basis for R^3 .

$$
|A| = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 9 & 3 \\ 1 & 0 & 4 \end{vmatrix} = -1 \neq 0
$$

 $A x = b$ has exactly one solution for every $u \Rightarrow$ spans $(S) = R^3$.

 $Ax = 0$ has exactly one (trivial) solution $\Rightarrow S$ is linearly independent.

 \Rightarrow *S* form a basis for R^3 .