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Chapter 3
Euclidean Vector Spaces

1. Vectors 1in 2-Space, 3-Space, and n-Space
2. Norm, Dot Product, and Distance in R"

3. Basis, Spanning Sets and Linear Independence
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1. Vectors in 2-Space, 3-Space, and n-Space

Vectors in the plane

= a vector xin the plane is represented by a directed line segment with its initial
point at the origin and its terminal point at (z,, z,).

Y
A
(z,, z,) ordered pair
T Terminal point
a vector
(0,0) >
Initial point

z, = first component of x
T, = second component of x
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A u = 2 A
34 13 17 3+
v =
2
24 hL
1 + 1+
= Vector Addition
? | —-x | > x
(ti + Vi, U + V) 1 7 _1 l
(t1,0g) =77 0
§==" A o
(7 U, + v
u=| '"l,v=| '|u+v=| ' !
U, 9 Uy + U,
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Vectors in the n-space
R! = 1-space = set of all real number
R* = 2-space = set of all ordered pair of real numbers (z;, z,)

R’ = 3-space = set of all ordered triple of real numbers (z, z,, z3)

R" = n-space = set of all ordered n-tuple of real numbers (z,, =, ..., z,)

= Notes: An n-tuple (x4, 2, .., z,) can be viewed as:
(1) a point in R" with the z.’s as its coordinates. 4y
(2) a vector xin R" with the z's as its components. T =
(3) a vector x in Rn will be represented also as = = (x;, 2y, ..., x,)
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Operations on Vectors in R"
Let u=(uq, uy, .., u,) @nd v=(vq, vy, .., v,) two vectors in R", and if c is any scalar

Equal: u=vifand only if u, = v, v, = vy, ., u, = v,
Vector addition (the sum of wand v): u+ v=(uq + vy, Uy + Vo, «., U, + V)
Scalar multiplication (the scalar multiple of u by ¢): cu = (cuq, cuy, .., cu,)

Note: The sum of two vectors and the scalar multiple of a vector in R" are
called the standard operations in R".

Negative: —u=(-uy, —u,, ..., —u,)
Difference: u— v = (uy — vy, Uy — Uy, w, U, — V,)

Zero vector: 0 =(0, 0, ..., 0)
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= Notes:
(1) The zero vector 0 in R" is called the additive identity in R".

(2) The vector —wv is called the additive inverse of w.

= Example 1: Vector operations in R’ (1.1:) 61
Let u=(-1,0, 1) and v = (2, -1, 5) in R, g
Perform each vector operation: AS

(Q) u+v (b) 2u (o) v—2u

@ u+v=(-1,01+(2, -1,5) = (1, -1, 6)
(b) 2u = 2 (-1, 0, 1) = (=2, 0, 2)
(€) v—2u = (2,-1,5) = (2,0, 2) = (4, -1, 3)
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= Theorem 1: (Properties of vector addition and scalar multiplication)

Let u, v, and w be vectors in R", and let cand d be scalars

(1) uw +wvis avectorin R" Closure under addition

(2) u+v=v+ u Commutative property of addition
(3) (u+v)+w=u+ (v +w) Associative property of addition

(4) u+0=u Additive identity property

(5) u+(—u)=0 Additive inverse property

(6) cuis avectorin R" Closure under scalar multiplication
(7) c(u+v)=cu+ cv Distributive property

(8) (c+ du=cu + du Distributive property

(9) c(du) = (cd)u Associative property of multiplication
(10) 1(u) = u Multiplicative identity property
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= Example 2: Vector operations in R4
Llet u=(2, -1,5,0), v=(4, 3, 1, -1) and w = (-6, 2, 0, 3) be vectors in R".
Solve xfor each of the following: (a) =2u— (v+ 3w), (b) 3(x + w)=2u—v + x
(@) z=2u—(v+3w)=2u—v—- 3w
=(4,-2,10,0)-(4, 3, 1,-1)-(-18, 6, 0, 9)
=(4-4+18,-2-3-6,10-1-0,0+1-9)
=(18, =11, 9, -8)

(b) (x+w)=2u—-v+rx3x+3w=2u—-v+xr > 3r—x=2u—-—v—- 3w
<:>2:1::2u—'v—3'w<:>a::u—%'v—%'w
r=(2,1,50)+(-2,-3,-3,2)+(9,-3,0,-3)

=9, -%.3.-4)

Euclidean Vector Spaces https://manara.edu.sy/ 2024-2025 10/33


https://manara.edu.sy/

CIJLl_clJl
= Theorem 2: (Properties of additive identity and additive inverse)

Let v be a vector in R", and c be a scalar. Then the properties below are true:
(1) The additive identity is unique. That s, if u + v = v, then u=0

(2) The additive inverse of vis unique. That s, if v + © =0, then u=—-v

(3) Ov = (4) c0=0

(5) If cv =0,then c=00rv =20

(6) (—v)=v

Linear combination

= The vector zis called a linear combination of v,, v,, ..., v, If it can be expressed
in the form = ¢,v, + ¢,v, + ... + ¢c,v, Where ¢,, ¢,, ..., ¢, are scalars.
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= Example 3: linear combination
Given z=(-1,-2,-2), u=(0,1,4), v=(-1,1, 2),and w= (3, 1, 2) in R>. Find q,
b, and c such that = au + bv + cw.

-b + 3¢
a + b +
4q + 2b + 2c

C

= -1
= —2 =a=1 b=-2, c=-1
= -2

= Example 4: not a linear combination
Given z=(1,-2,2), u=(1,2,3), v=(0, 1, 2), and w= (-1, 0, 1) in R’. Prove
that x is not a linear combination of v, v and w.

1 0 -1
21 0
32 1

.. 104
Gauss-J. EllmlnatIOI’l 01 2
_0 0 O

Thus z=u —2v — w

> % au+ bv+ cw
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2. Norm, Dot Product, and Distance in R"

= Norm (Length) of a Vector: The norm of a vector v = (v,, v,,
2

T

given by: || = \/fuf +UE et

= Example 5: Norm of a vector
(a) In R°, the length of v=(0, -2, 1, 4, -2) is given by:

o = JO +(—27 + 2+ 42+ (-2 =25 =5

(b) In R’the length of v = (7=, -7, =) is given by:

ol = () + (-7 + () = JE =1

(v is a unit vector)

..., v)in R"Iis
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= Notes: Properties of length

(1) o] 20

(2) vl =1 = v is called a unit vector

(3)[lv]| = 0iff v=0

= Notes:
(1) the standard unit vector in R*: {3, 74 ={(1, 0), (0, 1)}

(2) the standard unit vector in R*: {3, 3, K} ={(1, 0, 0), (0, 1, 0), (0, 0, 1)}

= Notes: Two nonzero vectors are parallel u = cv
(1) ¢> 0 = wand v have the same direction.
(2) ¢< 0= wand v have the opposite direction.
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* Theorem 3: (Length of a scalar multipli'e)
Let v be a vector in R"and ¢ be a scalar, then |cv| = |[[|v]

* Theorem 4: (Unit vector in the direction of v)

. . v
If vis a nonzero vector in R", then the vector u = H has length 1 and has the
()
same direction as w.

This vector u is called the unit vector in the direction of v.

= Note: The process of finding the unit vector in the direction of v is called
normalizing the vector v.

= Example 6: Finding a unit vector
Find the unit vector in the direction of v= (3, —1, 2).
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[of = 32 +(-1)’ + 22 =14
v (3,-1,2) 1

= — = = (3,—1,2):(3 ’—1’ 2]
[l 32+ (-2 +22 V14 J14 7147 14

= Distance between two vectors: The distance between
two vectors wand vin R"is: d(u, v) = |u — 9|

= Notes: (Properties of distance) vy, v2) .
L. _dw, (uy, ty)
(1) d(u, v) >0 g
(2) d(u, v)=0if and only if u=wv - u

(3) d(u, v) = d(v, u) .
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= Example 7: Distance between 2 vectors

The distance between u= (0, 2,2) and v=(2,0, 1) is
d(u, v) = u—v|=|(0-2),2-0,2-1)| = J(=2) +22 +12 =3

= Dot product in R": The dot product of u = (u,, u,, ..., v,) and v= (v, v,, ..., v,) IS
the scalar quantity: v.v = vy + v, v, + .. + ©, v,

= Theorem 5: (Properties of the dot product)
If u, v, and w are vectors in R" and cis a scalar, then:

(1) vv=1v.u (2) u.(v+ w) = u.v + u.w
(3) c(w.v) = (cu).v = u(cv) (4) v = o
(5) vow>0,and v.v=0ifand only if v=10
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» Example 8: Finding the dot product of two vectors
The dot product of u=(1, 2,0, -3) and v=(3, -2, 4, 2) is
u-v=(1)(3)+2)(=2)+(0)4) +(=3)2) =7
» Euclidean n-space: R" was defined to be the set of all order n-tuples of real
numbers. When R" is combined with the standard operations of vector

addition, scalar multiplication, vector length, and the dot product, the resulting
vector space is called Euclidean n-space.

= Example 9: Finding dot product
u=(2,-2), v=(5, 8), w= (-4, 3) |
(a) u.v (b) (u.v)w (c) u.(2v) (d) ”w”z (e) u.(v-2w)

(@) ww = (2)(5) + (~2)(8) = -6 (b) (wv)w=—w=—6(-4, 3) = (24, —18)
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(€) u.(2v) = 2(w.v) =2(-6)=-12  (d) ”wHZ =w.w=(—4)(-4) + (3)(3)
(e) (v-2w) =(5—-(-8),8-6)=(13, 2)

(v —2w) = (2)(13) + (=2)(2) = 22

25

= Example 10: Using the properties of the dot product
Given uw.u = 39, u.v = -3, v.v = 79. Find (u+ 2v).(3u + v)
(u+2v).(3u+ v) = u.(3u+ v) + 2v. (3u+ v)
= u.(3u) + u.v + (2v). (3u) + (2v).v
= 3(u.u) + u.v + 6(v.u) + 2(v.v)
= 3(u.u) + 7(u.v) + 2(v.v)
=3(39) + 7(-3) + 2(79) = 254
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= Theorem 6: (The Cauchy-Schwarz inequality)

If wand v are vectors in R", then |u.v| < |[u] |v]

= Example 11: (An example of the Cauchy-Schwarz inequality)
Verify the Cauchy-Schwarz inequality for u=(1, -1, 3) and v=(2, 0, —1)

vu =11, vv=-1, v.v=5

utl = [ =1 full = Ve = VTi5 = V35, [us| < Jul o

= The angle between two vectors in R"™
u-v

2
e [o]

0<O<r

cos @ =
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Opposite Obtuse angle Right angle Acute angle Same
direction u.v<0 u-v=>0 u-v>0 direction
o =
B iy o u ¥) u
/ 6! u % %0 u
s 2 e — : - - - @ - =
11 k" v v Vv v
6=T 2<cO<nm o=2 U-::H«::%r 6 =0
cos 6= —1 - 2 cos 6 =1
cos <0 cos =0 cos >0

* Note: The angle between the zero vector and another vector is not defined.
= Example 12: Finding the angle between u=(-4, 0, 2, -2), v=(2,0, -1, 1)

ul = Vua = (-4 + 0% + 22 + (- 2)* =24
= Vo =27 +0° + (-1 +12 =6

v
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v =(-4)2)+O0)O0)+2)(-D+(=2)(1) =-12
u-v -12 ~12
— cos @ = =-1=>0=r

[ullo] ~ V246 ~ ia4

= Note: wand v have opposite directions (u=-2v).
» Orthogonal vectors: Tow vectors wand v in R" are orthogonal if u.v =0.
= Note: The vector 0 is said to be orthogonal to every vector.

= Theorem 7: (The Triangle inequality)
If wand v are vectors in R", then |u + v|| < |u] +||v| a+v

= Note: Equality occurs in the triangle inequality if and only if the
vectors u and v have the same direction. [ —
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Orthogonal projections

» Let v and v be two vectors in R", such that v # 0. Then the orthogonal

. . . . . U-v
projection of w onto v is given by proj,u = v = av
a. ® b. "
u i i u
i | —
~ 0 : ' : \H ¥
- o b o o— ' ®

projju=av,a>0 proju=av,a<0

» Note: If v is a unit vector, then v-v = [[v[ = 1. The formula for the orthogonal
projection of u onto v takes the following simpler form:

proj,u = (u - v)v
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= Example 13: (Finding an orthogonal projection in R3)
Find the orthogonal projection of u= (6, 2, 4) onto v=(1, 2, 0).
ww = (6)(1) + (2)(2) + (4)(0) = 10 vw=12+24+0=5

U - v 1

v=g°(1_., 2.0) = (2, 4,0)

proj,u =
v-v

= Note: u —proj,u = (6,2,4) —(2,4,0) = (4, — 2,4) is orthogonal to v = (1,2,0)

* Theorem 8: (Orthogonal Projection and Distance)

If uwand v are vectors in R", such that A A
u : u "\_ .
v #0. Then P — / xf\ﬂu.m)
: u-v |
d(u, proj,u) < d(u,cv), c# | | -
V-0 o z - L A

proj,u cv
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» Theorem 9: (The Pythagorean theorem)
If wand v are vectors in R", then v and v are orthogonal

it and only if: [u + o = |ul + ||

= Dot product and matrix multiplication:

- o .
U G
Uu = UQ vV = UQ‘ . n:
k (A vector u = (u, u,, ..., u,) IN R" IS represented as an
U, | v, nx1 column matrix)
’U.l
U
wv=w'v=|u u - u,] 2| = lwo, + o, +-+u,v, |
_’U,”__
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3. Basis, Spanning Sets and Linear Independence
= Definition: Let S = {v,, v,,..., v,} IS @a non empty set of vectors in R" and let the
vector equation c,v; + ¢,v, + ... + ¢,v, = 0.
(1) If the equation has only the trivial solution (¢, = ¢, = ... ¢, = 0), then §'is

called linearly independent (LI).
(2) If the equation has a non trivial solution (i.e. not all zeros), then S is called
linearly dependent (LD).
= Notes:
(1) 0 € S= Sislinearly dependent. (2) v+#0 = {v}is linearly independent.
(3) 5, €5, if S, is linearly dependent = S, is linearly dependent.
if S, is linearly independent = S, is linearly independent.
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= Example 14: (Testing for linearly independent)

Determine whether the following set of vectors in R°is LIl or LD
S={v,=(1,2,3), v,=(0, 1, 2), v;=(-2, 0, 1)}
c — 2¢; =0
CU + U, + ;=0 = 2¢, + ¢, =0
3¢, + 2¢, + ¢ =0

1 0 -2]0 G J. Eliminati 1 0 00
— 2 1 O O adusSS-J. Iminaton > O 1 O O = Cl = CZ — C3 = O
3 2 1|0 00 1j0] = Sis LI

» [ndependence of two vectors: Two vectors w and v in R" are linearly
dependent if and only if one is a scalar multiple of the other.

Euclidean Vector Spaces https://manara.edu.sy/ 2024-2025 27/33


https://manara.edu.sy/

6)liaJl

(1) S ={v, v,} ={(1, 2, 0), (-2, 2, 1)} is LI because v, and v, are not scalar
multiples of each other.

(2) S={v,, v,}={(4, -4, -2), (-2, 2, 1)} is LD because v, = 2w,

= Theorem 10: (dependence in R")

Let S = {v, v,,..., v,} be a set of different vectors in R". If n < k, then the set §
Is linearly dependent.

= Note: Let S = {v,, v,,..., v,} be a set of k vectors that are LI in R", then k£ < n.

* Theorem 11: (Independence in R")

Let S = {v,, v,,..., v,} be n vectors in R". Let A be the nxn matrix whose
columns are given by wv,, v,,..., v,. Then vectors v,, v,,..., v, are linearly
independent & matrix A is invertible.
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Spanning sets

= Definition: Let S = {v,, v,,..., v,} be a set of k vectors in R". The set S is a
spanning set of R" if every vector in R" can be written as a linear combination
of vectors in S. In such cases it is said that S spans or generates the

n-space R".
= Example 15: (A spanning set for R3)
The set S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} spans R’ because any vector
u = (u,, Uy, u3) iN R’ can be written as:
u=1u/(1,0,0)+u(0, 1,0) + uy(0, 0, 1) = (w, uy, uy)

= Note: Let § = {v,, v,,..., v} be a set of k£ vectors in R" that spans R", then
k> n.
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» Example 16: (A spanning set for R3)
Show that the set S, ={v, =(1, 2, 3), v,=(0, 1, 2), v,=(-2, 0, 1)} spans R’

We must determine whether an arbitrary vector u = (u,, u,, u;) in R’ can be
as a linear combination of v,, v, and v.

C, — 2¢, =y,
ue R = u=cv +cv, +cv, =2 + ¢ = U,
3¢, + 2¢, + ¢, = u,
1 0 -2
[A[=2 1 0]=0
3 2 1

= Az = b has exactly one solution for every w in R°.
= spans(S, ) = R’
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= Example 17: (A Set Does Not Span R3)
From Example 4: the set 9, = {(1, 2, 3), (0, 1, 2), (-1, 0, 1)} does not span R’
because w = (1, -2, 2) is in R’ and cannot be expressed as a linear
combination of the vectors in ..

@
' The vectors in S, do not
" lie in a common plane

|
¥

The vectors in S, lie
In a common plane

X

S, =4(1,2,3), (0,1, 2),(-2,0, 1)} S5, ={(1,2,3),(0,1,2),(-1,0, 1)}
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Basis

= Definition: Let S = {v,, v,,..., v,} be a set of n vectors in R". The set S form a
basis for R" &
(i) wv,,v,,..., v, Span R"and
(i) v, v,,..., v, are linearly independent.

= The standard basis for R*: {3, 3, K} ={(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

= A nonstandard Basis for R*: S, ={(1, 2, 3), (0, 1, 2), (-2, 0, 1)}.

= Notes:
(1) Any n linearly independent vectors in R" form a basis for R".
(2) Any n vectors which span R" form a basis for R".
(3) Every basis of R" contains exactly n vectors.
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= Theorem 12: (Unigueness of basis representation)
If S={v, v, ..., v} is a basis for R", then every vector in R" can be written in

one and only one way as a linear combination of vectors in §.

= Example 18: (Basis for R°)
Show that the set S={v,=(1, 2, 1), v,=(2, 9, 0), v;=(3, 3, 4)} form a basis
for R°.

1 2 3
[A[=]2 9 3[=-1%0
1 0 4
Az = bhas exactly one solution for every u = spans(S) = R’.

Ax =0 has exactly one (trivial) solution = S is linearly independent.
= S form a basis for R°.
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