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1. Vectors in 2-Space, 3-Space, and n-Space

Vectors in the plane
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▪ a vector x in the plane is represented by a directed line segment with its initial 

point at the origin and its terminal point at (x1, x2).
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x1 = first component of x

x2 = second component of x

ordered pair 
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▪ Vector Addition
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▪ Scalar Multiplication
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R 

1  
= 1-space = set of all real number

R 

2  
= 2-space = set of all ordered pair of real numbers (x1, x2)

R 

3  
= 3-space = set of all ordered triple of real numbers (x1, x2, x3)

Vectors in the n-space

Rn  
= n-space = set of all ordered n-tuple of real numbers (x1, x2, …, xn)

▪ Notes: An n-tuple (x1, x2, …, xn) can be viewed as: 

(1) a point in Rn with the xi’s as its coordinates.

n

x
x

x

 
 

=  
 
  

1

2x(2) a vector x in Rn with the xi’s as its components.

(3) a vector x in Rn will be represented also as x = (x1, x2, …, xn) 
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Let u = (u1, u2, …, un) and v = (v1, v2, …, vn) two vectors in Rn, and if c is any scalar

▪ Vector addition (the sum of u and v): u + v = (u1 + v1, u2 + v2, …, un + vn)

▪ Scalar multiplication (the scalar multiple of u by c): cu = (cu1, cu2, …, cun)

▪ Note: The sum of two vectors and the scalar multiple of a vector in Rn are 

called the standard operations in Rn.

▪ Equal: u = v if and only if u1 = v1, u2 = v2, …, un = vn

Operations on Vectors in Rn

▪ Difference: u − v = (u1 − v1, u2 − v2, …, un − vn)

▪ Zero vector: 0 = (0, 0, …, 0) 

▪ Negative: −u = (−u1, −u2, …, −un)
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▪ Notes:

(1) The zero vector 0 in Rn is called the additive identity in Rn.

(2) The vector  −v  is called the additive inverse of v.

Let u = (−1, 0, 1) and v = (2, −1, 5) in R3. 

Perform each vector operation:

(a) u + v  (b) 2u  (c) v − 2u

(a) u + v = (−1, 0, 1) + (2, −1, 5) = (1, −1, 6)

(b) 2u = 2 (−1, 0, 1) = (−2, 0, 2)

(c) v − 2u = (2, −1, 5) − (−2, 0, 2) = (4, −1, 3)

▪ Example 1: Vector operations in R3
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▪ Theorem 1: (Properties of vector addition and scalar multiplication)

Let u, v, and w be vectors in Rn, and let c and d be scalars

(1) u + v is a vector in Rn   Closure under addition

(2) u + v = v + u     Commutative property of addition

(3) (u + v) + w = u + (v + w)  Associative property of addition

(4) u + 0 = u      Additive identity property

(5) u + (–u) = 0     Additive inverse property

(6) cu is a vector in Rn   Closure under scalar multiplication

(7) c(u + v) = cu + cv    Distributive property

(8) (c + d)u = cu + du    Distributive property

(9) c(du) = (cd)u     Associative property of multiplication

(10) 1(u) = u      Multiplicative identity property
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Let u = (2, −1, 5, 0), v = (4, 3, 1, −1) and w = (−6, 2, 0, 3) be vectors in R4. 

Solve x for each of the following: (a) x = 2u − (v + 3w), (b) 3(x + w) = 2u − v + x 

x = 2u − (v + 3w) = 2u − v − 3w

   = (4, −2, 10, 0) − (4, 3, 1, −1) − (−18, 6, 0, 9)

   = (4 − 4 +18, −2 − 3 − 6, 10 − 1 − 0, 0 + 1 − 9)

   = (18, −11, 9, −8) 

▪ Example 2: Vector operations in R4

(b)

, , , , , ,

, , ,

, , ,
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= − −

31
2 2

3 91 1
2 2 2 2

911
2 2

3( ) 2 3 3 2 3 2 3

2 2 3

(2 1 5 0) ( 2 ) (9 3 0 )

(9 4)

x w u v x x w u v x x x u v w

x u v w x u v w

x

(a)

https://manara.edu.sy/


https://manara.edu.sy/

https://manara.edu.sy/Euclidean  Vector Spaces 11/332024-2025

▪ Theorem 2: (Properties of additive identity and additive inverse)

Let v be a vector in Rn, and c be a scalar. Then the properties below are true: 

(1) The additive identity is unique. That is, if u + v = v, then u = 0

(2) The additive inverse of v is unique. That is, if v + u = 0, then u = –v

(3) 0v = 0 (4) c 0 = 0

(5) If cv = 0, then c = 0 or v = 0

(6) –(– v) = v

Linear combination

▪ The vector x is called a linear combination of v1, v2, …, vk if it can be expressed 

in the form x = c1v1 + c2v2 + … + ckvk where c1, c2, …, ck are scalars.
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Given x = (–1, –2, –2), u = (0, 1, 4), v = (–1, 1, 2), and w = (3, 1, 2) in R3. Find a, 

b, and c such that x = au + bv + cw.   

,  ,  

b c
a b c a b c
a b c

− + = −

+ + = −  = = − = −

+ + = −

3 1

2 1 2 1

4 2 2 2

Thus x = u − 2v − w

▪ Example 3: linear combination

▪ Example 4: not a linear combination

Given x = (1, –2, 2), u = (1, 2, 3), v = (0, 1, 2), and w = (–1, 0, 1) in R3. Prove 

that x is not a linear combination of u, v and w.   

− 
 −
 
 

1 0 1 1
2 1 0 2
3 2 1 2

− 
 −
 
 

1 0 1 1
0 1 2 4
0 0 0 7

Gauss-J. Elimination
⇒ x ≠ au + bv + cw 
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2.  Norm, Dot Product, and Distance in Rn

▪ Norm (Length) of a Vector: The norm of a vector v = (v1, v2, …, vn) in Rn is 

given by:

(a) In R5, the length of v = (0, −2, 1, 4, −2) is given by:

(v is a unit vector)

(b) In R3 the length of  is given by: 

▪ Example 5: Norm of a vector
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▪ Notes: Properties of length

is called a unit vector

(1) the standard unit vector in R2: {i, j} = {(1, 0), (0, 1)}

(2) the standard unit vector in R3: {i, j, k} = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

▪ Notes:

(1) c  0 ⇒ u and v have the same direction.

(2) c  0 ⇒ u and v have the opposite direction.

▪ Notes: Two nonzero vectors are parallel u = cv
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▪ Theorem 3: (Length of a scalar multiple)

Let v be a vector in Rn and c be a scalar, then

▪ Theorem 4: (Unit vector in the direction of v)

If v is a nonzero vector in Rn , then the vector              has length 1 and has the 

same direction as v. 

This vector u is called the unit vector in the direction of v.

▪ Note: The process of finding the unit vector in the direction of v is called 

normalizing the vector v.

Find the unit vector in the direction of v = (3, −1, 2).

▪ Example 6: Finding a unit vector
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▪ Distance between two vectors: The distance between 

two vectors u and v in Rn is: 

(1) d(u, v) ≥ 0  

(2) d(u, v) = 0 if and only if u = v

(3) d(u, v) = d(v, u) 

▪ Notes: (Properties of distance)
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▪ Example 7: Distance between 2 vectors

The distance between u = (0, 2, 2) and v = (2, 0, 1) is

▪ Dot product in Rn: The dot product of u = (u1, u2, …, un) and v = (v1, v2, …, vn) is 

the scalar quantity: u.v = u1v1 + u2v2 + … + unvn 

▪ Theorem 5: (Properties of the dot product)

If u, v, and w are vectors in Rn and c is a scalar, then:

(1) u.v = v.u    (2) u.(v + w) = u.v + u.w

(3) c(u.v) = (cu).v = u.(cv)  (4)

(5) v.v ≥ 0, and v.v = 0 if and only if v = 0
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The dot product of u = (1, 2, 0, −3) and v = (3, −2, 4, 2) is

▪ Example 8: Finding the dot product of two vectors

▪ Euclidean n-space: Rn was defined to be the set of all order n-tuples of real 

numbers. When Rn is combined with the standard operations of vector 

addition, scalar multiplication, vector length, and the dot product, the resulting 

vector space is called Euclidean n-space.

▪ Example 9: Finding dot product

(a) u.v (b) (u.v)w (c) u.(2v) (d) (e) u.(v − 2w)

u = (2, −2), v = (5, 8), w = (−4, 3)

(a) u.v = (2)(5) + (−2)(8) = −6  (b) (u.v)w = −w = −6(−4, 3) = (24, −18)
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(c) u.(2v) = 2(u.v) =2(−6) = −12  (d)         = w.w = (−4)(−4) + (3)(3) = 25

(e) (v − 2w) = (5 – (−8), 8 – 6) = (13, 2)

u.(v − 2w) = (2)(13) + (−2)(2) = 22

Given u.u = 39, u.v = −3, v.v = 79. Find (u + 2v).(3u + v)

▪ Example 10: Using the properties of the dot product

(u + 2v).(3u + v) = u.(3u + v) + 2v. (3u + v)

 = u.(3u) + u.v + (2v). (3u) + (2v).v

 = 3(u.u) + u.v + 6(v.u) + 2(v.v)

 = 3(u.u) + 7(u.v) + 2(v.v)

 = 3(39) + 7(−3) + 2(79) = 254
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▪ Theorem 6: (The Cauchy-Schwarz inequality)

If u and v are vectors in Rn, then

▪ Example 11: (An example of the Cauchy-Schwarz inequality)

Verify the Cauchy-Schwarz inequality for u = (1, −1, 3) and v = (2, 0, −1)

u.u = 11, u.v = −1, v.v = 5

▪ The angle between two vectors in Rn:
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cos  < 0 cos  = 0 cos  > 0

▪ Note: The angle between the zero vector and another vector is not defined.

▪ Example 12: Finding the angle between u = (−4, 0, 2, −2), v = (2, 0, −1, 1)
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▪ Note: u and v have opposite directions (u = −2v).

▪ Orthogonal vectors: Tow vectors u and v in Rn are orthogonal if u.v = 0.

▪ Note: The vector 0 is said to be orthogonal to every vector.

▪ Theorem 7: (The Triangle inequality)

If u and v are vectors in Rn, then

▪ Note: Equality occurs in the triangle inequality if and only if the 

vectors u and v have the same direction.
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Orthogonal projections

▪ Let u and v be two vectors in Rn, such that v ≠ 0. Then the orthogonal 

projection of u onto v is given by

▪ Note: If v is a unit vector, then                . The formula for the orthogonal 

projection of u onto v takes the following simpler form:
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▪ Example 13: (Finding an orthogonal projection in R3)

Find the orthogonal projection of u = (6, 2, 4) onto v = (1, 2, 0).

u.v = (6)(1) + (2)(2) + (4)(0) = 10  v.v = 12 + 22 + 02 = 5

▪ Note:

▪ Theorem 8: (Orthogonal Projection and Distance)

If u and v are vectors in Rn, such that 

v ≠ 0. Then
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If u and v are vectors in Rn, then u and v are orthogonal 

if and only if:   

▪ Theorem 9: (The Pythagorean theorem)

▪ Dot product and matrix multiplication:

(A vector u = (u1, u2, …, un) in Rn is represented as an 

n×1 column matrix) 
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3.  Basis, Spanning Sets and Linear Independence

▪ Definition: Let S = {v1, v2,…, vk} is a non empty set of vectors in Rn and let the 

vector equation c1v1 + c2v2 + … + ckvk = 

(1) If the equation has only the trivial solution (c1 = c2 = … ck = 0), then S is 

called linearly independent (LI).

(2) If the equation has a non trivial solution (i.e. not all zeros), then S is called 

linearly dependent (LD).

▪ Notes:

(1) 0  S ⇒ S is linearly dependent. (2) v ≠ 0 ⇒ {v} is linearly independent.

(3) S1 ⊆ S2   if S1 is linearly dependent ⇒ S2 is linearly dependent.

     if S2 is linearly independent ⇒ S1 is linearly independent.
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Determine whether the following set of vectors in R3 is LI or LD

S = {v1 = (1, 2, 3), v2 = (0, 1, 2), v3 = (−2, 0, 1)} 

c c
c c
c c c

− =

 + =

+ + =

1 3

1 2

1 2 3

2 0

2 0

3 2 0

0

0

− 
 
 
 

1 0 2
2 1 0 0
3 2 1

 
 
 
 

1 0 0 0
0 1 0 0
0 0 1 0

Gauss-J. Elimination ⇒ c1 = c2 = c3 = 0

⇒ S is LI

▪ Example 14: (Testing for linearly independent)

c1v1 + c2v2 + c3v3 = 

▪ Independence of two vectors: Two vectors u and v in Rn are linearly 

dependent if and only if one is a scalar multiple of the other.
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(1) S = {v1, v2} = {(1, 2, 0), (−2, 2, 1)} is LI because v1 and v2 are not scalar 

multiples of each other.

(2) S = {v1, v2} = {(4, −4, −2), (−2, 2, 1)} is LD because v1 = −2v2

Let S = {v1, v2,…, vk} be a set of different vectors in Rn. If n  k, then the set S 

is linearly dependent.

▪ Theorem 10: (dependence in Rn)

▪ Theorem 11: (Independence in Rn)

Let S = {v1, v2,…, vn} be n vectors in Rn. Let A be the nxn matrix whose 

columns are given by v1, v2,…, vn. Then vectors v1, v2,…, vn are linearly 

independent ⇔ matrix A is invertible.

▪ Note: Let S = {v1, v2,…, vk} be a set of k vectors that are LI in Rn, then k  n.    
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▪ Definition: Let S = {v1, v2,…, vk} be a set of k vectors in Rn. The set S  is a 

spanning set of Rn if every vector in Rn can be written as a linear combination 

of vectors in S. In such cases it is said that S spans or generates the 

n-space Rn.

Spanning sets

▪ Example 15: (A spanning set for R3)

The set S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} spans R3 because any vector

u = (u1, u2, u3) in R3 can be written as:

u = u1(1, 0, 0) + u2(0, 1, 0) + u3(0, 0, 1) = (u1, u2, u3)

▪ Note: Let S = {v1, v2,…, vk} be a set of k vectors in Rn that spans Rn, then 

k  n.    
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▪ Example 16: (A spanning set for R3)

Show that the set S1 = {v1 = (1, 2, 3), v2 = (0, 1, 2), v3 = (−2, 0, 1)} spans R3

We must determine whether an arbitrary vector u = (u1, u2, u3) in R3 can be 

as a linear combination of v1, v2 and v3.

1 3 1
3

1 1 2 2 3 3 1 2 2

1 2 3 3

2

2

3 2

c c u
R c c c c c u

c c c u

− =

  = + +  + =

+ + =

u u v v v

A
−

= 

1 0 2
2 1 0 0
3 2 1

⇒ Ax = b has exactly one solution for every u in R3.

⇒ spans(S1 ) = R3
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▪ Example 17: (A Set Does Not Span R3)

From Example 4: the set S2 = {(1, 2, 3), (0, 1, 2), (−1, 0, 1)} does not span R3 

because w = (1, −2, 2) is in R3 and cannot be expressed as a linear 

combination of the vectors in S2.

S1 = {(1, 2, 3), (0, 1, 2), (−2, 0, 1)} S2 = {(1, 2, 3), (0, 1, 2), (−1, 0, 1)}

The vectors in S1 do not 

lie in a common plane

The vectors in S2 lie 

in a common plane
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Basis

▪ Definition: Let S = {v1, v2,…, vn} be a set of n vectors in Rn. The set S  form a 

basis for Rn ⇔

(i) v1, v2,…, vn span Rn and

(ii) v1, v2,…, vn are linearly independent.

▪ Notes:

 (1) Any n linearly independent vectors in Rn form a basis for Rn.

 (2) Any n vectors which span Rn form a basis for Rn.

 (3) Every basis of Rn contains exactly n vectors.

▪ The standard basis for R3: {i, j, k} = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

▪ A nonstandard Basis for R3: S1 = {(1, 2, 3), (0, 1, 2), (−2, 0, 1)}.

https://manara.edu.sy/


https://manara.edu.sy/

https://manara.edu.sy/Euclidean  Vector Spaces 33/332024-2025

If S ={v1, v2, …, vn} is a basis for Rn, then every vector in Rn can be written in 

one and only one way as a linear combination of vectors in S.

▪ Theorem 12: (Uniqueness of basis representation)

▪ Example 18: (Basis for R3)

Show that the set S = {v1 = (1, 2, 1), v2 = (2, 9, 0), v3 = (3, 3, 4)} form a basis 

for R3.

A = = − 

1 2 3
2 9 3 1 0
1 0 4

Ax = b has exactly one solution for every u ⇒ spans(S ) = R3.

Ax = 0 has exactly one (trivial) solution ⇒ S is linearly independent.

⇒ S form a basis for R3.

https://manara.edu.sy/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

